Polygenic risk scores are ready for application in routine cardiological practice - CONTRA

Heribert Schunkert
Deutsches Herzzentrum München • Technische Universität München
TII

Polygenic risk scores are ready for application in routine cardiological practice - CONTRA

H. Schunkert
has received honoraria for consulting from AstraZeneca, MSD/Merck, Daiichi, Servier, Amgen and Takeda Pharma. He has further received honoraria for lectures and/or chairs from AstraZeneca, BayerVital, BRAHMS, Medtronic, Mitsubishi Pharma, Novartis, Sanofi and Servier

ab

Heribert Schunkert

Deutsches Herzzentrum München • Technische Universität München

Integrating genetics in the assessment for coronary disease

pos. family history

mutations

polymorphisms
molecular basis

Common SNP versus rare FH mutation

LDLR SNP rs6511720; Effect: 6.99 mg / Allele; $P=4.28 \times 10^{-117}$

Strong effect on the individual
80.620.000 inhabitans $\times 0.001$ allel frequency $\times 2$ alleles $\times \mathbf{1 5 0} \mathbf{~ m g =} \mathbf{2 4} \mathbf{~ k g}$

Genome-wide association study (GWAS)

Genotyping
1 Million SNPs

Imputation
>20 Million SNPs
Statistical comparison
for each SNP

322 CAD loci $\mathrm{P}<5 \times 10^{-8}$

All strong common risk alleles have been found by today

$\longrightarrow O R>1.15(n=6) \longrightarrow O R=1.05-1.15(n=116) \longrightarrow O R<1.05(n=122)$

Computing individual probability

Computing individual probability

Computing individual probability

Computing individual probability

uk Biobank Computing individual probability

uk Biobank Computing individual probability

Computing individual probability

Lifetime prevalence

Seemingly a paradox:
Genetics have the strongest effect in people with the most non-genetic risk factors

2021 ESC Guidelines on cardiovascular disease prevention in clinical practice

With the special contribution of the European Association of Preventive Cardiology (EAPC)

Is it possible to use the position on the PRS distribution curve as a factor in conjunction with conventional risk factors to predict total risk?

SCORE2 \& SCORE2-OP
10-year risk of (fatal and non-fatal) CV events in populations at moderate CVD risk

$<2.5 \%$	$<5 \%$	$<7.5 \%$
2.5 to $<7.5 \%$	5 to $<10 \%$	7.5 to $<15 \%$
$\geq 7.5 \%$	$\geq 10 \%$	$\geq 15 \%$

\% Women		\% Men	
Non-smoking	Smoking	Non-smoking	Smoking
Non-HDL cholesterol			

the individual
 * PRS-factor (0.6-2.2)

The relative effects at any position of the PRS on risk are fairly the same

UK Biobank ($\mathrm{n}=424.405$)
rel. risk is independent
from risk factors

rel. risk is independent
from tertiles of

Who has a benefit from genotyping?

Who has a benefit from genotyping?

Who has a benefit from genotyping?

People with high CVD risk need treatment - but no genotyping

Re-adjustment of Risk by a CAD-PRS

Who has a benefit from genotyping?

People with low CVD risk need no treatment and no genotyping

in any case

Re-adjustment of Risk by a CAD-PRS

10-year CVD risk $\approx 1 \%$
E
$-$

Who has a benefit from genotyping?

a person with a lower risk by PRS needs no change in preventive treatment

Re-adjustment of Risk by a CAD-PRS

Who has a benefit from genotyping?

a person with a lower risk by PRS needs no change in preventive treatment

Re-adjustment of Risk by a CAD-PRS
■ Very High Risk by SCORE2+PRS

Requirements for implementation of PRS-based counselling for cardiovascular risk

Deutsches Herzzentrum, TUM - München PD Dr. T. Kessler Prof. Dr. H. Sager Dr. M. von Scheidt Shichao Pang, PhD

IIEG, Lübeck Prof. J. Erdmann

TUM

Prof. Dr. T. Meitinger
International
Prof. Sir N.J. Samani Dr. S. Kathiresan
Dr. J. Lusis
Prof. Dr. H. Watkins
Dr. J. Björkegren
Prof. P. Visscher

DZHK

DEUTSCHES ZENTRUM FÜR HERZ-KREISLAUF-FORSCHUNG E.V.

Munich, Lübeck, Leicester, Boston, Brisbane, LA, NYC...

Open questions

- No consensus on the type of PRS
(e.g. millions vs significant-only variants, continuous vs categorical classification of PRS)

Potential solutions

- At least all genome-wide significant lead SNPs; weighted by effect size
- preferably continuous risk classification
- No consensus on calibration across ethnically diverse groups
- Predictive testing of individuals requires calibration of the PRS in respective ethnic groups
- Clinical background information requested
- No consensus on the contents of counselling
- Predominantly commercial providers
- Poor scientific evaluation of the merits of PRS-based counselling
- If PRS used only as adjunct to a risk score:
- counselling on CVD risk prediction and its medical implications is sufficient.
- If used for identification of other common diseases and of
incidental findings:
- genetic counselling before and after PRS.
- Extension to academic institutions and specialized preventive care centers may be useful
- A reimbursement modality may be needed
- PRS for CVD risk prediction is only meaningful together with clinical background information (e.g. a risk score)
- Systematic exploration of medical benefits/harms as well as costs benefit ratio is needed.

Application of the PRS to individuals with moderate risk UK Biobank ($\mathrm{n}=296,001$)
moderate risk
$n=144,587$

$$
\begin{array}{cc}
\text { moderate } \rightarrow \text { high risk } & \text { high risk } \\
13,754 & n=24,272
\end{array}
$$

3.6\%

10 year event rate

Challenges for the use of PRS in predicting CVD risk

- Optimal number of SNPs to build the PRS (hundreds, thousands, millions)
- Input (SNPs) from other types of atherosclerosis (peripheral arterial disease, large artery stroke)
- Calibration across various geographical and ancestral groups
- Precise quantification of effect sizes in subgroups (e.g. young vs. old, males vs. females, diabetics etc.)
- Optimal integration into other prediction tools (SCORE2, Framingham, Pooled Cohort Equations)
- Optimal graphical presentations of test results
- Training tools for counselors of the PRS need to be developed
- Education tools for users of the PRS need to be developed
- Medico-legal aspects need to be resolved (e.g. implications for health insurance)

