Polygenic risk scores are ready for application in routine cardiological practice – CONTRA

Heribert Schunkert

Deutsches Herzzentrum München • Technische Universität München

Polygenic risk scores are ready for application in routine cardiological practice – CONTRA

H. Schunkert

has received honoraria for consulting from AstraZeneca, MSD/Merck, Daiichi, Servier, Amgen and Takeda Pharma. He has further received honoraria for lectures and/or chairs from AstraZeneca, BayerVital, BRAHMS, Medtronic, Mitsubishi Pharma, Novartis, Sanofi and Servier

Heribert Schunkert

Deutsches Herzzentrum München • Technische Universität München

Integrating genetics in the assessment for coronary disease

pos. family history

mutations molecular basis

polymorphisms

Common SNP versus rare FH mutation

LDLR SNP rs6511720; Effect: 6.99 mg / Allele; *P* = 4.28 x10⁻¹¹⁷

Strong effect in the population

Strong effect on the individual

80.620.000 inhabitans x 0.001 allel frequency x 2 alleles x **150 mg** = **24 kg**

Genome-wide association study (GWAS)

Tcheandjieu C et al Nat Med 2022 Aragam K et al Nat Genet 2022

Chen & Schunkert J Intern Med. PMID: 34237186

All strong common risk alleles have been found by today

increasing size of genome-wide association studies

9p W Two risk alleles d ₆	1q 🥲 Two normal alleles	6p 😃 Two normal alleles				

					avera OR/ a 1.0	llele

*FDR<5% prior to inclusion of UKBB in GWAS meta-analysis

Clin Res Cardiol 2023;112:247-257

Clin Res Cardiol 2023;112:247-257

UK Biobank Computing individual probability

Clin Res Cardiol 2023;112:247-257

*FDR<5% prior to inclusion of UKBB in GWAS meta-analysis

UK Biobank (n=424.405)

Computing individual probability

Lifetime prevalence

Seemingly a paradox:

Genetics have the strongest effect in people with the most non-genetic risk factors

2021 ESC Guidelines on cardiovascular disease prevention in clinical practice

With the special contribution of the European Association of Preventive Cardiology (EAPC)

/					
1-10-137			75-79		
120-139	GGGG	ଉପଡୟ		00030	8898
100-119	DDDD	DBD		BOO@	0220
160-179	BBBB	@@@@@		D11313131313131313131131111111111111	28 31 33 36
140-159	0000	BD02	70-74	DDB20	23 25 28 30
120-139	9900	₲₲₵₵	/0-/1	D (B (G (G	19 20 22 24
100-119		₽₽₽₽		₽ ₽₽ ₿	₲₲₿₡
SCORE2	6				5
160-179	0000	6600		4000B	2022323
140-159	8000	<u>ÖÖÖÖ</u>		2000	0000
120-139	0008	õõõõ	65-69	DOO B	BDDB
100-119	6666	õõõd		0000	DBBBB
160-179	0889	DBD		DØBB	0000
140-159	6600	ŏŏŏŏ		6000	BDDD
120-139	6666	8000	60-64	0000	0000
100-119	4445	6006		6008	0000
160-179	6660	0000		0000	BBD
140-159	0000	0000		2890	0000
120-139	3344	6008	55-59	3608	0000
100-119	3333	6666		1000	0000
160-179	4466	8890		7890	OBBO
140-159	8844	6678		5608	0000
120-139	2288	0000	50-54	4666	0000
100-119	2222	3445		3445	6678
160-179	8884	6089		5608	0000
140-159	2288	6666		4666	000
120-139	0000	8446	45-49	8446	5789
100-119	0000	8884		2884	0000
160-179	0000	6660		4560	890B
140-159	0000	8466		8446	6080
120-139	0000	8884	40-44	2884	4568
100-119		2223		0000	6466
		5666		0000	
					—— 💓 ESC-

European Heart Journal September 2021;42:3227–3337

Is it possible to use the position on the PRS distribution curve as a factor in conjunction with conventional risk factors to predict total risk?

the individual **PRS-factor** (0.6 - 2.2)

The relative effects at any position of the PRS on risk are fairly the same UK Biobank (n=424.405)

Ling Li and H. Schunkert et al, unpublished

People with high CVD risk need treatment – but no genotyping

Re-adjustment of Risk by a CAD-PRS

People with low CVD risk need no treatment and no genotyping

in any case

Re-adjustment of Risk by a CAD-PRS

a person with a lower risk by PRS needs no change in preventive treatment

Re-adjustment of Risk by a CAD-PRS

Requirements for implementation of PRS-based counselling for cardiovascular risk

Deutsches Herzzentrum, **TUM – München** PD Dr. T. Kessler Prof. Dr. H. Sager Dr. M. von Scheidt Shichao Pang, PhD

IIEG, Lübeck

Prof. J. Erdmann

TUM

Prof. Dr. T. Meitinger

International

Prof. Sir N.J. Samani Dr. S. Kathiresan Dr. J. Lusis Prof. Dr. H. Watkins Dr. J. Björkegren Prof. P. Visscher Digi<mark>M</mark>ed Bayern **DZHK** DEUTSCHES ZENTRUM FÜR HERZ-KREISLAUF-FORSCHUNG E.V.

Munich, Lübeck, Leicester, Boston, Brisbane, LA, NYC...

Open questions	Potential solutions			
 No consensus on the type of PRS (e.g. millions vs significant-only variants, continuous vs categorical classification of PRS) 	 At least all genome-wide significant lead SNPs; weighted by effect size preferably continuous risk classification 			
 No consensus on calibration across ethnically diverse groups 	• Predictive testing of individuals requires calibration of the PRS in respective ethnic groups			
Clinical background information requested	• PRS for CVD risk prediction is only meaningful together with clinical background information (e.g. a risk score)			
 No consensus on the contents of counselling 	 If PRS used only as adjunct to a risk score: counselling on CVD risk prediction and its medical implications is sufficient. If used for identification of other common diseases and of incidental findings: genetic counselling before and after PRS. 			
Predominantly commercial providers	 Extension to academic institutions and specialized preventive care centers may be useful A reimbursement modality may be needed 			
 Poor scientific evaluation of the merits of PRS-based counselling 	• Systematic exploration of medical benefits/harms as well as costs benefit ratio is needed.			

Application of the PRS to individuals with moderate risk

UK Biobank (n=296,001)

Challenges for the use of PRS in predicting CVD risk

- Optimal number of SNPs to build the PRS (hundreds, thousands, millions)
- Input (SNPs) from other types of atherosclerosis (peripheral arterial disease, large artery stroke)
- Calibration across various geographical and ancestral groups
- Precise quantification of effect sizes in subgroups (e.g. young vs. old, males vs. females, diabetics etc.)
- Optimal integration into other prediction tools (SCORE2, Framingham, Pooled Cohort Equations)
- Optimal graphical presentations of test results
- Training tools for counselors of the PRS need to be developed
- Education tools for users of the PRS need to be developed
- Medico-legal aspects need to be resolved (e.g. implications for health insurance)

